Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 53(2): e16111, 2017. tab
Article in English | LILACS | ID: biblio-839487

ABSTRACT

ABSTRACT The present study evaluated the antimicrobial susceptibility profile, ß-lactamase production, and genetic diversity of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. using phenotypic identification, antimicrobial susceptibility testing, and ß-lactamase phenotypic detection. Isolates were obtained from patients in an intensive care unit in a hospital in southern Brazil. Bacterial genomic DNA was extracted, followed by the genotypic detection of carbapenemases and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). Fifty-six isolates (26 Klebsiella pneumoniae, five Escherichia coli, three Enterobacter aerogenes, nine P. aeruginosa, and 13 Acinetobacter spp.) were evaluated. The phenotypic extended spectrum ß-lactamase (ESBL) test was positive in 53.8% of the K. pneumoniae isolates, 100.0% of the E. coli isolates, and 100.0% of the E. aerogenes isolates. Phenotypic and genotypic testing of K. pneumoniae carbapenemase (KPC) was positive in 50.0% of the K. pneumoniae isolates. Phenotypic and genotypic testing showed that none of the P. aeruginosa or Acinetobacter spp. isolates were positive for metallo- ß-lactamase (MBL). The bla OXA gene was detected only in Acinetobacter spp. The lowest genetic diversity, determined by ERIC-PCR, was observed among the KPC-producing K. pneumoniae isolates and OXA-producing Acinetobacter spp. isolates, indicating the inadequate dissemination control of multidrug-resistant bacteria in this hospital environment.


Subject(s)
Humans , Male , Female , beta-Lactamases/analysis , Gram-Negative Bacteria/classification , Intensive Care Units/statistics & numerical data , Pseudomonas aeruginosa/metabolism , Acinetobacter/metabolism , Microbiology , Bacterial Typing Techniques/instrumentation , Enterobacteriaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL